
Compositional inference for Bayesian networks and
causality

Bart Jacobs, Márk Széles, Dario Stein
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Márk Széles Compositional inference February 26, 2025 2 / 22



Discrete probability subdistributions

Definition
A discrete probability subdistribution on a set X is a function
ω : X → [0, 1] such that

1 supp(ω) = {x ∈ X : ω(x) ̸= 0} is a finite set.
2 ∥ω∥ =

∑
x∈X ω(x) ≤ 1.

Write subdistributions as formal sums ω =
∑

x∈X ω(x)|x⟩
There is a monad D≤ : Sets → Sets.
Write f : X → Y for a Kleisli-map f : X → D≤(Y ).
Write f (y |x) for f (x)(y) ∈ [0, 1].
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Copy-discard-compare (CDC) categories

Definition
A copy-discard-compare category is a symmetric monoidal category
(C , ⊗, I) with copier ∆X : X → X ⊗ X , discard dX : X → I, and
comparator ∇X : X ⊗ X → X maps such that...
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The axioms of copy-discard-compare (CDC) categories
Copy and discard:

=

X ⊗ Y X ⊗ YX Y X Y

= = = =

I I

=

I

=

IX ⊗ YX Y

=

Compare:

=

X ⊗ Y X ⊗ YX Y X Y

= =

I I

=

I

Copy-compare interaction:

= = =
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Alternative definitions of CDC-categories

CDC-categories can also be defined in terms of caps ∩X : X ⊗ X → I.

=

X ⊗ Y X ⊗ YX Y X Y

=

= =

I I

=

I

Caps and comparators are inter-definable.

= =

There is a third, equivalent, definition via ‘least’ disintegrations of
copier and identity maps.
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Márk Széles Compositional inference February 26, 2025 6 / 22



Normalisation

Non-zero subdistributions ω ∈ D≤(X ) can by normalised:

nrm(ω) =
∑
x∈X

ω(x)
∥ω∥

∣∣∣x〉

Subprobability kernels f : X → Y can be normalised pointwise:

nrm(f )(x) =
{

nrm(f (x)) if ∥f (x)∥ ≠ 0
0 otherwise

Graphically, we write

f=nrm(f )
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Self-normalising maps

Definition
We call a map f : X → Y self-normalising if

f f
= f
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Self-normalising maps

Definition
We call a map f : X → Y self-normalising if

f f
= f

For a subchannel f : X → Y in Kl(D≤) this translates to

∀x ∈ X .∥f (x)∥ ∈ {0, 1}
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The ‘normalised by’ relation

Definition
A map g : X → Y normalises f : X → Y if

g f
= f

In this case, we write f ⪯ g .

For subchannels f , g : X → Y in Kl(D≤) this translates to

∀x ∈ X .f (x) ̸= 0 =⇒ g(x) = nrm(f (x))

The relation ⪯ is a partial order on self-normalising maps.
The dashed box should select the least normalisation.
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Properties of normalisation
Equational properties:

f g f g= f
=

f = f

g

f
=

g

f

f

Implicational properties:

g = =⇒
g

f
=

g

f f
=

f f =⇒
g

f
=

g

f

(∗)
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Disintegration

Definition
If f : Z → X ⊗ Y , then a disintegration of f is a map f |X : X ⊗ Z → Y
that satisfies

f

f |X

=
f
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Building your own disintegrations

Try to define a disintegration by

f
f |X =
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Try to define a disintegration by

f
f |X =

f = f =f |X

f

f |X

=
f

f |X
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Building your own disintegrations

Definition
A CDC-category has cancellative caps if the following implication holds
for all f , g : X → Y ⊗ Z :

f = ⇒ f = gg
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Building your own disintegrations

Definition
A CDC-category has cancellative caps if the following implication holds
for all f , g : X → Y ⊗ Z :

f = ⇒ f = gg

Proposition (Lorenz and Tull, 2023)
In a CDC-category with normalisation and cancellative caps, every map
has a disintegration.
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Building your own disintegrations

Definition
A CDC-category has cancellative caps if the following implication holds
for all f , g : X → Y ⊗ Z :

f = ⇒ f = gg

Proposition (Lorenz and Tull, 2023)
In a CDC-category with normalisation and cancellative caps, every map
has a disintegration.

This does not recover disintegration in BorelStoch≤1!

Márk Széles Compositional inference February 26, 2025 13 / 22



Bayesian inversions

Definition
Let g : Y → Z , f : X → Y . A Bayesian inversion of g with respect to f
is a map g†

f : Z ⊗ X → Y that satisfies

f

g

=
g

g†
f

f
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Bayesian inversions

Definition
Let g : Y → Z , f : X → Y . A Bayesian inversion of g with respect to f
is a map g†

f : Z ⊗ X → Y that satisfies

f

g

=
g

g†
f

f

Bayesian inversions exist ⇐⇒ Disintegrations exist
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Broad support

Definition
Let C be a CDC-category with cancellative caps. A map f : X → Y in C
has broad support if

f
=

For f : X → Y this means f (x)(y) > 0 for all x ∈ X , y ∈ Y .
Maps with broad support are closed under many operations:
composition, tensor, marginalisation, normalisation, disintegration.
If a self-normalising f has broad support, then f is total.
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Disappearence of dashed boxes

Proposition
If f : X → Y has broad support, then

f
=
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Disappearence of dashed boxes

Proposition
If f : X → Y has broad support, then

f
=

Proof:

f
=

f
= f = =
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Example: deriving conditional independence

Definition
Let h : X → Y ⊗ Z . We say that, in the context of h, Y is conditionally
independent of Z given X , if h can be factorised as

h
f g

YX

Z

X Y

Z

=

In this case, we write Y
∐

Z | X .
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Example: deriving conditional independence

Prove that A
∐

B | Z in the following program:

Z <- flip(1/2)
X <- flip(1/2)
Y <- flip(1/2)
A = X || Z
B = Z || Y
return (Z, X, Y, A, B)
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Example: deriving conditional independence
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Example: inference in a Bayesian network

Compute how conditioning on B effects E in the following fault tree:

1/5

1/2 1/3 1/4

A B C D E F G H
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Example: inference in a Bayesian network
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Conclusion and outlook

We developed a powerful compositional calculus for computing
disintegrations in discrete probabilistic models.
We recognised the role of Bayesian inversion and the notion of broad
support.
Many more examples in the paper:

▶ Applications to probabilistic programming.
▶ We give an elegant derivation of the ‘front-door-adjustment’ formula, a

known example from the causal reasoning literature.
▶ An example of counterfactual reasoning.

Question: how to generalise to continuous probability?
Outlook: implementation in a string diagram rewrite tool.
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