Compositional inference for Bayesian networks and causality

Bart Jacobs, Márk Széles, Dario Stein

Computing with Markov Categories Workshop Tallinn, February 26, 2025

Outline

- Discrete probability subdistributions
- Copy-discard-compare categories
- Normalisation structures in copy-discard categories
- Disintegration and Bayesian inversion
- A compositional calculus of conditioning

Definition

A discrete probability subdistribution on a set X is a function $\omega:X\to [0,1]$ such that

- supp $(\omega) = \{x \in X : \omega(x) \neq 0\}$ is a finite set.
- $\|\omega\| = \sum_{x \in X} \omega(x) \le 1.$

3/22

Definition

A discrete probability subdistribution on a set X is a function $\omega: X \to [0,1]$ such that

- supp $(\omega) = \{x \in X : \omega(x) \neq 0\}$ is a finite set.
- $\|\omega\| = \sum_{x \in X} \omega(x) \le 1.$

• Write subdistributions as formal sums $\omega = \sum_{x \in X} \omega(x) |x\rangle$

Definition

A discrete probability subdistribution on a set X is a function $\omega: X \to [0,1]$ such that

- supp $(\omega) = \{x \in X : \omega(x) \neq 0\}$ is a finite set.
- $\|\omega\| = \sum_{x \in X} \omega(x) \le 1.$

- Write subdistributions as formal sums $\omega = \sum_{x \in X} \omega(x) |x\rangle$
- There is a monad $\mathcal{D}_{<}: \mathbf{Sets} \to \mathbf{Sets}.$

Márk Széles

Definition

A discrete probability subdistribution on a set X is a function $\omega: X \to [0,1]$ such that

- supp $(\omega) = \{x \in X : \omega(x) \neq 0\}$ is a finite set.
- $\|\omega\| = \sum_{x \in X} \omega(x) \le 1.$

- Write subdistributions as formal sums $\omega = \sum_{x \in X} \omega(x) |x\rangle$
- There is a monad $\mathcal{D}_{<}: \mathbf{Sets} \to \mathbf{Sets}.$
- Write $f: X \rightsquigarrow Y$ for a Kleisli-map $f: X \to \mathcal{D}_{\leq}(Y)$.

4 ロ ト 4 個 ト 4 重 ト 4 重 ・ 9 Q (*)

Definition

A discrete probability subdistribution on a set X is a function $\omega: X \to [0,1]$ such that

- supp $(\omega) = \{x \in X : \omega(x) \neq 0\}$ is a finite set.
- $\|\omega\| = \sum_{x \in X} \omega(x) \le 1.$

- Write subdistributions as formal sums $\omega = \sum_{x \in X} \omega(x) |x\rangle$
- There is a monad \mathcal{D}_{\leq} : **Sets** \rightarrow **Sets**.
- Write $f: X \rightsquigarrow Y$ for a Kleisli-map $f: X \to \mathcal{D}_{\leq}(Y)$.
- Write f(y|x) for $f(x)(y) \in [0,1]$.

Copy-discard-compare (CDC) categories

Definition

A **copy-discard-compare category** is a symmetric monoidal category (C, \otimes, I) with **copier** $\Delta_X : X \to X \otimes X$, **discard** $d_X : X \to I$, and **comparator** $\nabla_X : X \otimes X \to X$ maps such that...

The axioms of copy-discard-compare (CDC) categories

• Copy and discard:

The axioms of copy-discard-compare (CDC) categories

• Copy and discard:

• Compare:

The axioms of copy-discard-compare (CDC) categories

• Copy and discard:

• Compare:

• Copy-compare interaction:

Alternative definitions of CDC-categories

• CDC-categories can also be defined in terms of caps $\cap_X : X \otimes X \to I$.

Alternative definitions of CDC-categories

• CDC-categories can also be defined in terms of caps $\cap_X : X \otimes X \to I$.

$$= \bigcap_{X = Y = X \otimes Y = X \otimes Y} = \bigcap_{X = Y = X \otimes Y = X \otimes Y} = \bigcap_{X = X \otimes Y} = \bigcap_{X = X \otimes Y = X \otimes Y} = \bigcap_{X = X \otimes Y = X \otimes Y} = \bigcap_{X = X \otimes Y = X \otimes Y} = \bigcap_{X = X \otimes Y = X \otimes Y} = \bigcap_{X = X \otimes Y = X \otimes Y} = \bigcap_{X = X \otimes Y = X \otimes Y} = \bigcap_{X = X \otimes Y = X \otimes Y} = \bigcap_{X = X \otimes Y = X \otimes Y} = \bigcap_{X = X \otimes Y = X \otimes Y} = \bigcap_{X = X \otimes Y = X \otimes Y} = \bigcap_{X = X \otimes Y = X} = \bigcap_{X = X \otimes Y = X} = \bigcap_{X = X \otimes Y} = \bigcap_{X = X \otimes$$

• Caps and comparators are inter-definable.

Alternative definitions of CDC-categories

• CDC-categories can also be defined in terms of caps $\cap_X : X \otimes X \to I$.

$$= \bigcap_{X \in Y \setminus X \otimes Y \setminus X \otimes Y} = \bigcap_{X \in Y \setminus X \otimes Y \cup X \otimes Y} = \bigcap_{X \in Y \setminus X \otimes Y \cup X \otimes Y} = \bigcap_{X \in Y \setminus X \otimes Y \cup X \otimes Y} = \bigcap_{X \in Y \cup X \otimes Y \cup X \otimes Y} = \bigcap_{X \in Y \cup X \otimes Y \cup X \otimes Y} = \bigcap_{X \in Y \cup X \otimes Y \cup X \otimes Y} = \bigcap_{X \in Y \cup X \otimes Y \cup X \otimes Y} = \bigcap_{X \in Y \cup X \otimes Y \cup X \otimes Y} = \bigcap_{X \in Y \cup X \otimes Y \cup X \otimes Y} = \bigcap_{X \in Y \cup X \otimes Y \cup X \otimes Y} = \bigcap_{X \in Y \cup X \otimes Y \cup X \otimes Y} = \bigcap_{X \in Y \cup X \otimes Y \cup X \otimes Y} = \bigcap_{X \in Y \cup X \otimes Y \cup X \otimes Y} = \bigcap_{X \in Y \cup X \otimes Y \cup X \otimes Y} = \bigcap_{X \in Y \cup X \otimes Y \cup X \otimes Y} = \bigcap_{X \in Y \cup X \otimes Y \cup X \otimes Y} = \bigcap_{X \in Y \cup X \cup X \otimes Y} = \bigcap_{X \in Y \cup X \cup X \otimes Y} = \bigcap_{X \in Y \cup X \cup X} = \bigcap_{X \in Y \cup X} = \bigcap_{X \in Y \cup X} = \bigcap_{X \in X \cup X} = \bigcap_{X \in Y \cup X} = \bigcap_{X \in Y \cup X} = \bigcap_{X \in Y \cup X} = \bigcap_{X \in$$

Caps and comparators are inter-definable.

 There is a third, equivalent, definition via 'least' disintegrations of copier and identity maps.

Normalisation

• Non-zero subdistributions $\omega \in \mathcal{D}_{\leq}(X)$ can by normalised:

$$\operatorname{nrm}(\omega) = \sum_{x \in X} \frac{\omega(x)}{\|\omega\|} |x\rangle$$

7 / 22

Normalisation

• Non-zero subdistributions $\omega \in \mathcal{D}_{\leq}(X)$ can by normalised:

$$\operatorname{nrm}(\omega) = \sum_{x \in X} \frac{\omega(x)}{\|\omega\|} |x\rangle$$

• Subprobability kernels $f: X \hookrightarrow Y$ can be normalised pointwise:

$$\operatorname{nrm}(f)(x) = \begin{cases} \operatorname{nrm}(f(x)) & \text{if } ||f(x)|| \neq 0 \\ \mathbf{0} & \text{otherwise} \end{cases}$$

7 / 22

Normalisation

• Non-zero subdistributions $\omega \in \mathcal{D}_{\leq}(X)$ can by normalised:

$$\operatorname{nrm}(\omega) = \sum_{x \in X} \frac{\omega(x)}{\|\omega\|} |x\rangle$$

• Subprobability kernels $f: X \hookrightarrow Y$ can be normalised pointwise:

$$\operatorname{nrm}(f)(x) = \begin{cases} \operatorname{nrm}(f(x)) & \text{if } ||f(x)|| \neq 0 \\ \mathbf{0} & \text{otherwise} \end{cases}$$

Graphically, we write

$$nrm(f) = \int_{-1}^{1} \int_{-1}^{1}$$

7 / 22

Self-normalising maps

Definition

We call a map $f: X \to Y$ self-normalising if

Self-normalising maps

Definition

We call a map $f: X \to Y$ self-normalising if

For a subchannel $f:X \rightsquigarrow Y$ in $\mathcal{K}I(\mathcal{D}_{\leq})$ this translates to

$$\forall x \in X. \|f(x)\| \in \{0,1\}$$

The 'normalised by' relation

Definition

A map $g: X \to Y$ normalises $f: X \to Y$ if

In this case, we write $f \leq g$.

For subchannels $f,g:X \rightsquigarrow Y$ in $\mathcal{K}l(\mathcal{D}_{\leq})$ this translates to

$$\forall x \in X. f(x) \neq \mathbf{0} \Longrightarrow g(x) = \operatorname{nrm}(f(x))$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

9/22

The 'normalised by' relation

Definition

A map $g: X \to Y$ normalises $f: X \to Y$ if

In this case, we write $f \prec g$.

For subchannels $f, g: X \Leftrightarrow Y$ in $\mathcal{K}I(\mathcal{D}_{<})$ this translates to

$$\forall x \in X. f(x) \neq \mathbf{0} \Longrightarrow g(x) = \operatorname{nrm}(f(x))$$

• The relation \leq is a partial order on self-normalising maps.

Márk Széles

February 26, 2025

9/22

The 'normalised by' relation

Definition

A map $g: X \to Y$ normalises $f: X \to Y$ if

In this case, we write $f \prec g$.

For subchannels $f,g:X \hookrightarrow Y$ in $\mathcal{K}l(\mathcal{D}_{<})$ this translates to

$$\forall x \in X. f(x) \neq \mathbf{0} \Longrightarrow g(x) = \operatorname{nrm}(f(x))$$

- The relation \leq is a partial order on self-normalising maps.
- The dashed box should select the least normalisation.

Márk Széles

9/22

Properties of normalisation

• Equational properties:

• Implicational properties:

$$\begin{array}{c} \bullet \\ \hline g \end{array} = \begin{array}{c} \bullet \\ \hline f \end{array} \Rightarrow \begin{array}{c} \hline g \\ \hline f \end{array} = \begin{array}{c} \hline g \\ \hline f \end{array} = \begin{array}{c} \hline f \\ \hline f \end{array} \Rightarrow \begin{array}{c} \hline g \\ \hline f \end{array} = \begin{array}{c} \hline g \\ \hline g \end{array} = \begin{array}{c} \hline g \\ \\ \hline g \end{array} = \begin{array}{c} \hline g \\ \\$$

Disintegration

Definition

If $f:Z\to X\otimes Y$, then a **disintegration** of f is a map $f|_X:X\otimes Z\to Y$ that satisfies

Try to define a disintegration by

Try to define a disintegration by

$$f|_X$$
 =

12 / 22

Definition

A CDC-category has **cancellative caps** if the following implication holds for all $f, g: X \to Y \otimes Z$:

Definition

A CDC-category has **cancellative caps** if the following implication holds for all $f, g: X \to Y \otimes Z$:

Proposition (Lorenz and Tull, 2023)

In a CDC-category with normalisation and cancellative caps, every map has a disintegration.

Definition

A CDC-category has **cancellative caps** if the following implication holds for all $f, g: X \to Y \otimes Z$:

Proposition (Lorenz and Tull, 2023)

In a CDC-category with normalisation and cancellative caps, every map has a disintegration.

This does not recover disintegration in BorelStoch $_{\leq 1}$!

4 ロト 4 個 ト 4 差 ト 4 差 ト 差 め 9 0 0 0 0

Bayesian inversions

Definition

Let $g: Y \to Z$, $f: X \to Y$. A **Bayesian inversion** of g with respect to f is a map $g_f^{\dagger}: Z \otimes X \to Y$ that satisfies

Bayesian inversions

Definition

Let $g: Y \to Z$, $f: X \to Y$. A **Bayesian inversion** of g with respect to f is a map $g_f^{\dagger}: Z \otimes X \to Y$ that satisfies

Bayesian inversions exist ←⇒ Disintegrations exist

Definition

Let $\mathbb C$ be a CDC-category with cancellative caps. A map $f:X\to Y$ in $\mathbb C$ has **broad support** if

Definition

Let $\mathbb C$ be a CDC-category with cancellative caps. A map $f:X\to Y$ in $\mathbb C$ has **broad support** if

• For $f: X \Leftrightarrow Y$ this means f(x)(y) > 0 for all $x \in X$, $y \in Y$.

15/22

Definition

Let $\mathbb C$ be a CDC-category with cancellative caps. A map f:X o Y in $\mathbb C$ has **broad support** if

- For $f: X \rightsquigarrow Y$ this means f(x)(y) > 0 for all $x \in X$, $y \in Y$.
- Maps with broad support are closed under many operations: composition, tensor, marginalisation, normalisation, disintegration.

Definition

Let $\mathbb C$ be a CDC-category with cancellative caps. A map f:X o Y in $\mathbb C$ has **broad support** if

- For $f: X \Leftrightarrow Y$ this means f(x)(y) > 0 for all $x \in X$, $y \in Y$.
- Maps with broad support are closed under many operations: composition, tensor, marginalisation, normalisation, disintegration.
- If a self-normalising f has broad support, then f is total.

Disappearence of dashed boxes

Proposition

If $f: X \to Y$ has broad support, then

Disappearence of dashed boxes

Proposition

If $f: X \to Y$ has broad support, then

Proof:

Example: deriving conditional independence

Definition

Let $h: X \to Y \otimes Z$. We say that, in the context of h, Y is **conditionally independent** of Z given X, if h can be factorised as

In this case, we write $Y \coprod Z \mid X$.

Example: deriving conditional independence

Prove that $A \coprod B \mid Z$ in the following program:

```
Z <- flip(1/2)
X <- flip(1/2)
Y <- flip(1/2)
A = X || Z
B = Z || Y
return (Z, X, Y, A, B)</pre>
```

Example: deriving conditional independence

Example: inference in a Bayesian network

Compute how conditioning on B effects E in the following fault tree:

Example: inference in a Bayesian network

Conclusion and outlook

- We developed a powerful compositional calculus for computing disintegrations in discrete probabilistic models.
- We recognised the role of Bayesian inversion and the notion of broad support.
- Many more examples in the paper:
 - Applications to probabilistic programming.
 - ▶ We give an elegant derivation of the 'front-door-adjustment' formula, a known example from the causal reasoning literature.
 - ► An example of counterfactual reasoning.

Conclusion and outlook

- We developed a powerful compositional calculus for computing disintegrations in discrete probabilistic models.
- We recognised the role of Bayesian inversion and the notion of broad support.
- Many more examples in the paper:
 - Applications to probabilistic programming.
 - ▶ We give an elegant derivation of the 'front-door-adjustment' formula, a known example from the causal reasoning literature.
 - An example of counterfactual reasoning.
- Question: how to generalise to continuous probability?
- Outlook: implementation in a string diagram rewrite tool.