Markov effectuses and Riesz spaces

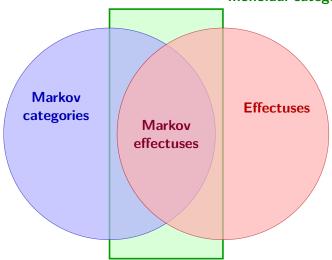
Márk Széles¹

¹Radboud University, Nijmegen

PUDDLE University of Oxford 6 November 2025

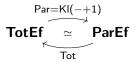
A landscape of channel-based categorical probability 1

Distributive monoidal categories

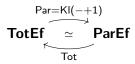


^{1...}may not be complete

• Unbiased view of total and partial computation:

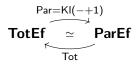


Unbiased view of total and partial computation:



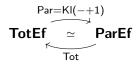
• Example: $KI(\mathcal{D})$ and $KI(\mathcal{D}_{\leq 1})$.

Unbiased view of total and partial computation:



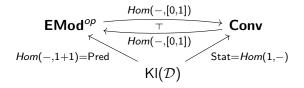
- Example: $KI(\mathcal{D})$ and $KI(\mathcal{D}_{\leq 1})$.
- Convention: write arrow \to and \circ for total maps, $\circ \to$ and \odot for partial maps.

Unbiased view of total and partial computation:



- Example: $KI(\mathcal{D})$ and $KI(\mathcal{D}_{\leq 1})$.
- Convention: write arrow \to and \circ for total maps, $\circ \!\!\!\to$ and \odot for partial maps.
- $f: X \to Y + 1$ is the same as $f: X \Leftrightarrow Y$.

Emphasis on coproducts, structure of (fuzzy) predicates $X \to 1+1$ and states $1 \to X$:



Total effectuses

A (total) effectus is a category B such that

- B has finite coproducts.
- B has a final object.
- The following squares are pullbacks in B.

• The following two maps are jointly monic in **B**.

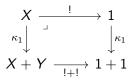
$$1+1+1 {\overset{[\kappa_1,\kappa_2,\kappa_2]}{\underset{[\kappa_2,\kappa_1,\kappa_2]}{\longrightarrow}}} 1+1$$

The following squares are pullbacks in **B**.

$$X + Y \xrightarrow{id+!} X + 1$$

$$!+id \downarrow \qquad \qquad \downarrow !+id$$

$$1 + Y \xrightarrow{id+!} 1 + 1$$



• The left one allows for pairing of partial maps. That is, the coproduct X + Y is a bit like a product in $Par(\mathbf{B})$.

The following squares are pullbacks in **B**.

$$X + Y \xrightarrow{id+!} X + 1$$

$$\downarrow !+id \downarrow \qquad \qquad \downarrow !+id$$

$$1 + Y \xrightarrow{id+!} 1 + 1$$

$$\begin{array}{c} X \xrightarrow{\quad ! \quad } 1 \\ {}_{\kappa_1} \downarrow \qquad \qquad \downarrow {}_{\kappa_1} \\ X + Y \xrightarrow{\quad [++]} 1 + 1 \end{array}$$

- The left one allows for pairing of partial maps. That is, the coproduct X + Y is a bit like a product in $Par(\mathbf{B})$.
- \bullet The right one expresses some sort of zero-sum-freeness. E.g. $KI(\mathcal{D}_{\pm})$ fails this.

The following two maps are jointly monic in \mathbf{B} .

$$1+1+1 {\mathop \longrightarrow \limits_{\left[\kappa_2,\kappa_1,\kappa_2\right]}^{\left[\kappa_1,\kappa_2,\kappa_2\right]}} 1+1$$

- TotRel fails this.
- Expresses something about cancellativity of addition of predicates $p: X \to 1+1$.

The following two maps are jointly monic in \mathbf{B} .

$$1+1+1 {\overset{[\kappa_1,\kappa_2,\kappa_2]}{\underset{[\kappa_2,\kappa_1,\kappa_2]}{\longrightarrow}}} 1+1$$

- TotRel fails this.
- Expresses something about cancellativity of addition of predicates $p: X \to 1+1$.
- Makes the partial projections $\triangleright_1 : X + Y \rightsquigarrow X$ and $\triangleright_2 : X + Y \rightsquigarrow Y$ jointly monic in Par(**B**), where

$$\triangleright_1 = [\mathsf{id}, \kappa_2]$$
 $\triangleright_2 = [\kappa_2, \mathsf{id}]$

Examples of effectuses

Explanation	Total	Partial
(Partial) functions	Sets	Par
Discrete (sub)probability kernels	$KI(\mathcal{D})$	$KI(\mathcal{D}_{\leq 1})$
Measurable (sub)probability kernels	$KI(\mathcal{G})$	$KI(\mathcal{G}_{\leq 1})$
Dedekind σ -complete unital Riesz spaces		
with σ -normal positive	σ URiesz $_{\sigma}^{op}$	σ URiesz $_{\sigma}^{op}$ PSU
(sub)unital maps		
C*-algebras with positive	CStar _{PU} ^{op}	CStar _{PSU} op
(sub)unital maps	CStarpy	Cotaipsu
Von Neumann algebras		
with completely positive,	vNA _{CPNU} ^{op}	vNA _{CPNSU} ^{op}
normal, (sub)unital maps		

Examples of Markov effectuses

Explanation	Total	Partial
(Partial) functions	Sets	Par
Discrete (sub)probability kernels	$KI(\mathcal{D})$	$KI(\mathcal{D}_{\leq 1})$
Measurable (sub)probability kernels	$KI(\mathcal{G})$	$KI(\mathcal{G}_{\leq 1})$
Dedekind σ -complete unital Riesz spaces		
with σ -normal positive	σ URiesz $_{\sigma}^{op}$	σ URiesz $_{\sigma}^{op}$ PSU
(sub)unital maps		
C*-algebras with positive	CStar _{PIJ} ^{op}	CStar _{PSU} op
(sub)unital maps	CStarpy	CStarpsu
Von Neumann algebras		
with completely positive,	vNA _{CPNU} op	vNA _{CPNSU} op
normal, (sub)unital maps		

- Let $f, g: X \hookrightarrow Y$ in $KI(\mathcal{D}_{\leq 1})$.
- The maps f and g are **compatible** (written $f \perp g$) if for all $x \in X$,

$$\sum_{y\in Y} f(y|x) + g(y|x) \le 1.$$

- Let $f, g: X \hookrightarrow Y$ in $KI(\mathcal{D}_{\leq 1})$.
- The maps f and g are **compatible** (written $f \perp g$) if for all $x \in X$,

$$\sum_{y\in Y} f(y|x) + g(y|x) \le 1.$$

• If $f \perp g$, then define $f \otimes g : X \Leftrightarrow Y$ by

$$(f \otimes g)(y|x) = f(y|x) + g(y|x).$$

- Let $f, g: X \Leftrightarrow Y$ in $KI(\mathcal{D}_{\leq 1})$.
- The maps f and g are **compatible** (written $f \perp g$) if for all $x \in X$,

$$\sum_{y\in Y} f(y|x) + g(y|x) \le 1.$$

• If $f \perp g$, then define $f \otimes g : X \Leftrightarrow Y$ by

$$(f \otimes g)(y|x) = f(y|x) + g(y|x).$$

• Clearly, this \oslash is associative, and the zero map $\mathbf{0}: X \Leftrightarrow Y$ is a neutral element.

• Composition preserves ∅: PCM-enrichment

- Composition preserves ∅: PCM-enrichment
- Define the following order on maps $X \Leftrightarrow Y$:

$$f \leq g \iff \forall x, y. f(y|x) \leq g(y|x).$$

• Composition preserves this order: poset-enrichment.

The structure of partial maps

Definition

A partial commutative monoid is a set X with a zero element $\mathbf{0}$, and partial binary operation \otimes that satisfies the following, where we write $x \perp y$ if $x \otimes y$ is defined.

- $\textbf{2} \quad \text{If } x \bot y \text{ then } y \bot x \text{ and } x \oslash y = y \oslash x.$
- If $x \perp y$ and $(x \otimes y) \perp z$, then $y \perp z$, $x \perp (y \otimes z)$, and $(x \otimes y) \otimes z = x \otimes (y \otimes z)$.

The structure of partial maps

Proposition

Let **B** be a total effectus.

- Par(B) is enriched in PCMs.
- 2 Partial maps $X \Leftrightarrow Y$ are ordered by:

$$f \leq g \iff \exists h.f \otimes h = g.$$

1 These orders form a poset-enrichment in $Par(\mathbf{B})$.

Predicates and scalars

- Maps $p: X \to 1+1$, equivalently maps $p: X \hookrightarrow 1$ are called **predicates**.
- In KI(\mathcal{D}), predicates correspond to fuzzy predicates $p: X \to [0,1]$.

Predicates and scalars

- Maps $p: X \to 1+1$, equivalently maps $p: X \hookrightarrow 1$ are called **predicates**.
- In KI(\mathcal{D}), predicates correspond to fuzzy predicates $p: X \to [0,1]$.
- Maps $s: 1 \rightarrow 1+1$, equivalently maps $s: 1 \Rightarrow 1$ are called **scalars**.
- In $KI(\mathcal{D})$, scalars correspond to elements of the unit interval [0,1].

The structure of predicates (example)

- There is a **truth** predicate $\mathbf{1}: X \to [0,1]$, given by $\mathbf{1}(x) = 1$.
- ullet If p:X o [0,1], define its **orthocomplement** $p^\perp:X o [0,1]$ by

$$p^{\perp}(x)=1-p(x).$$

Then $p \otimes p^{\perp} = 1$.

The structure of predicates (example)

- There is a **truth** predicate $\mathbf{1}: X \to [0,1]$, given by $\mathbf{1}(x) = 1$.
- ullet If p:X o [0,1], define its **orthocomplement** $p^\perp:X o [0,1]$ by

$$p^{\perp}(x) = 1 - p(x).$$

Then $p \otimes p^{\perp} = 1$.

- Scalars $s, r \in [0, 1]$ can be multiplied.
- ullet Scalars in [0,1] have an action on predicates p:X o [0,1], given by

$$(s \cdot p)(x) = s \cdot p(x).$$

Definition

An **effect algebra** is PCM $(X, \odot, \mathbf{0})$ with an additional operation $(-)^{\perp}: X \to X$ that satisfies the following, where we write $\mathbf{1} = \mathbf{0}^{\perp}$.

- **1** \mathbf{x}^{\perp} is the unique element for which $\mathbf{x} \otimes \mathbf{x}^{\perp} = \mathbf{1}$.
- ② If $x \perp 1$, then x = 0

Definition

An **effect monoid** is an effect algebra $(M, \bigcirc, \mathbf{0})$ with an additional binary operation & that satisfies the following.

- & is associative, and has 1 as neutral element.
- ${\color{red} 2}$ & preserves ${\color{red} 0}$ and ${\color{gray}\bigcirc}$ in both arguments.

The effect monoid is called **commutative** if & is commutative.

Definition

An **effect monoid** is an effect algebra $(M, \emptyset, \mathbf{0})$ with an additional binary operation & that satisfies the following.

- $oldsymbol{0}$ & is associative, and has $oldsymbol{1}$ as neutral element.
- ${\color{red} {f 2}}$ & preserves ${\color{red} {f 0}}$ and ${\color{red} {\color{gray} {f 0}}}$ in both arguments.

The effect monoid is called **commutative** if & is commutative.

Definition

An **effect module** over an effect monoid M is a an effect algebra X with an M-action $-\cdot -: M \times X \to X$ that satisfies the following:

- **1** The action preserves $\mathbf{0}$ and \odot in both arguments.
- $\mathbf{0} \mathbf{1}_{M} \cdot x = x.$
- $(m \& n) \cdot x = m \cdot (n \cdot x).$

Proposition

Let **B** be an effectus.

- The collection M of scalars $1 \rightarrow 1 + 1$ forms an effect monoid.
- ② For all objects X, the collection Pred(X) of predicates $X \to 1+1$ is an effect module over M.

The predicate transformer functor

Proposition

Let **B** be an effectus. Write \mathbf{EMod}_M for the category of effect modules over the scalars of **B**, with module homomorphisms as maps. Then there is a functor $\mathrm{Pred}: \mathbf{B} \to \mathbf{EMod}_M^{op}$, defined on morphisms by

$$\operatorname{Pred}(f)(p) = p \circ f$$
.

The predicate transformer functor

Proposition

Let **B** be an effectus. Write \mathbf{EMod}_M for the category of effect modules over the scalars of **B**, with module homomorphisms as maps. Then there is a functor $\mathsf{Pred}: \mathbf{B} \to \mathbf{EMod}_M^{op}$, defined on morphisms by

$$\operatorname{Pred}(f)(p) = p \circ f.$$

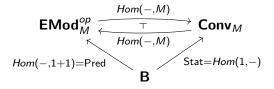
• In $KI(\mathcal{D})$, Pred is defined as follows:

$$\mathsf{Pred}(X) = [0,1]^X$$

$$\mathsf{Pred}(f: X \to \mathcal{D}(Y))(p)(x) = \sum_{y \in Y} f(y|x) \cdot p(y) = \mathop{\mathbb{E}}_{y \sim f(x)} p(y)$$

State-and-effect triangles (sketch)

- States $1 \to X$ of an effectus form a convex set over the scalars.
- There is a 'state-and-effect triangle':



Markov categories

Definition

A **Markov category** is a semicartesian symmetric monoidal category $(\mathbf{C}, \otimes, 1)$ with **copier** $\Delta_X : X \to X \otimes X$ and **discard** $!_X : X \to 1$ maps, such that

Markov categories

Definition

A **Markov category** is a semicartesian symmetric monoidal category $(\mathbf{C}, \otimes, 1)$ with **copier** $\Delta_X : X \to X \otimes X$ and **discard** $!_X : X \to 1$ maps, such that

If **C** has coproducts, the Kleisli-category KI(-+1) is a **copy-discard** category.

Deterministic maps

Definition

A map $f: X \to Y$ in a Markov-category is called **deterministic** if

Markov effectuses

Definition

A Markov effectus is a category B that is both an effectus and a Markov category, and also satisfies the following:

- The tensor preserves finite coproducts.
- ② If $f: X \rightsquigarrow X$, such that $f \leq id_X$, then the following holds in $Par(\mathbf{B})$:

Markov effectuses

Definition

A **Markov effectus** is a category **B** that is both an effectus and a Markov category, and also satisfies the following:

- The tensor preserves finite coproducts.
- **2** If $f: X \hookrightarrow X$, such that $f \leq id_X$, then the following holds in $Par(\mathbf{B})$:

- Such an f is called side-effect-free.
- Write $\operatorname{End}_{\leq \operatorname{id}}(X)$ for the collection of side-effect-free maps on X.

The structure of predicates 2. (example)

- Predicates $[0,1]^X$ in $\mathsf{KI}(\mathcal{D})$ form an effect monoid via pointwise multiplication.
- In $\mathsf{KI}(\mathcal{D}_{\leq 1})$, side-effect-free maps $f \in \mathsf{End}_{\leq \mathsf{id}}(X)$ are of the following form for some $p \in [0,1]^X$:

$$f(x) = p(x)|x\rangle.$$

• This gives an isomorphism of effect monoids $Pred(X) \cong \operatorname{End}_{\leq \operatorname{id}}(X)$.

The structure of predicates 2.

Proposition

Let \mathbf{B} a Markov effectus, X an object of \mathbf{B} .

- Both Pred(X) and $End_{id}(X)$ are commutative effect monoids.

The structure of predicates 2.

Definition

Let M be an effect monoid. A **convex effect monoid** over M is an effect monoid that is also an effect module over M.

The structure of predicates 2.

Definition

Let M be an effect monoid. A **convex effect monoid** over M is an effect monoid that is also an effect module over M.

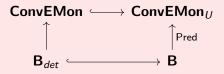
- Write ConvEMon for the category of convex effect monoids over M with maps that preserve both the effect module and effect monoid structure.
- Write ConvEMon_U for the category of convex effect monoids over M
 with maps that must preserve only the effect module structure.

The predicate transformer functor 2.

Proposition

Let $\bf B$ be a Markov effectus with scalars M.

- The predicate functor $\mathsf{Pred}: \mathbf{B} \to \mathbf{EMod}_M$ restricts to a functor $\mathsf{Pred}: \mathbf{B} \to \mathbf{ConvEMon}_U$.
- ② Write $\mathbf{B}_{det} \hookrightarrow \mathbf{B}$ for the subcategory of deterministic maps. Then the predicate functor fits in the commuting square below:



The predicate transformer functor 2.

Question

Is $Pred : \mathbf{B} \to \mathbf{ConvEMon}_U$ monoidal?

The predicate transformer functor 2.

Question

Is Pred : $\mathbf{B} \to \mathbf{ConvEMon}_U$ monoidal?

Better question

Is $ConvEMon_U$ even monoidal?

σ -effectuses

Definition

A σ -partially additive monoid is a set X with a partial countable sum operation \odot that satisfies the following axioms, where we write $\bot U$ if a countable subset $U \subseteq X$ is summable.

- Let $U \subseteq X$ be countable such that $U = \biguplus_{k \in \mathbb{N}} U_k$. Then $\bot U$ if and only if $\bot U_k$ for all k. Moreover, $\textcircled{0} U = \textcircled{0}_{k \in \mathbb{N}} \textcircled{0} U_k$.
- ② If $x \in X$, then $\bot \{x\}$ and $\bigcirc \{x\} = x$.
- **3** $\perp U$ if and only if $\perp F$ for all finite subsets $F \subseteq U$.

σ -effectuses

Definition

An effectus **B** is a σ -effectus if

- 1 It has countable coproducts.
- **2** $Par(\mathbf{B})$ is σ -PAM-enriched.
- (Some technical axioms that are not important for the story.)

Scalar division, real effectuses

Definition

An effect monoid M has **division** if for all $s, t \in M$ such that $s \leq t$ and $t \neq 0$, there is a unique $d \in M$ such that d & t = s.

Scalar division, real effectuses

Definition

An effect monoid M has **division** if for all $s, t \in M$ such that $s \leq t$ and $t \neq 0$, there is a unique $d \in M$ such that d & t = s.

Proposition (Cho, Westerbaan, van de Wetering, 2020)

Let ${\bf B}$ a σ -effectus whose scalars M have division. Then M is either $\{0\}$, $\{0,1\}$, or [0,1].

Scalar division, real effectuses

Definition

An effect monoid M has **division** if for all $s, t \in M$ such that $s \leq t$ and $t \neq 0$, there is a unique $d \in M$ such that d & t = s.

Proposition (Cho, Westerbaan, van de Wetering, 2020)

Let **B** a σ -effectus whose scalars M have division. Then M is either $\{0\}$, $\{0,1\}$, or [0,1].

Definition

An effectus is called **real** if its scalars are the unit interval [0,1].

The structure of predicates 3.

Proposition (by me)

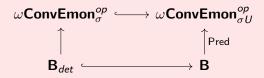
Let **B** a real Markov σ -effectus. Then predicates $\mathbf{B}(X,1+1)$ form a lattice-ordered ω -complete convex effect monoid.

The predicate transformer functor 3.

Proposition (by me)

Let **B** be a real Markov σ -effectus.

- **1** The predicate functor Pred : $\mathbf{B} \to \mathbf{ConvEMon}$ restricts to a functor Pred : $\mathbf{B} \to \omega \mathbf{ConvEmon}_U$.
- ② Write $\mathbf{B}_{det} \hookrightarrow \mathbf{B}$ for the subcategory of deterministic maps. Then the predicate functor fits in the commuting square below:



The predicate functor Pred is strong monoidal.

Faithfulness of the predicate transformer functor

Definition

A σ -effectus is called **predicate-separated** if any two $f,g:X\to Y$ satisfy f=g whenever $p\circ f=p\circ g$ for all predicates $p:Y\to 1+1$.

Faithfulness of the predicate transformer functor

Definition

A σ -effectus is called **predicate-separated** if any two $f, g: X \to Y$ satisfy f = g whenever $p \circ f = p \circ g$ for all predicates $p: Y \to 1+1$.

Proposition

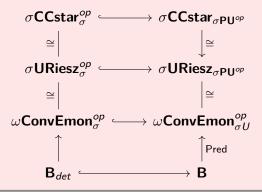
A σ -effectus ${f B}$ is predicate -separated if and only if

 $\mathsf{Pred}: \mathbf{B} \to \omega \mathbf{ConvEmon}_{\sigma U}^{op} \text{ is faithful}.$

The predicate transformer functor 3.5. (sketch)

Proposition (by me)

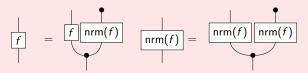
Let **B** be a real Markov σ -effectus. The predicate functor fits into the following diagram.



Normalisation

Proposition (by me)

Let **C** be a Markov σ -effectus. Then every partial map $f: X \Leftrightarrow Y$ admits a normalisation $nrm(f): X \Leftrightarrow Y$ that satisfies the following in $Par(\mathbf{B})$:



Updating

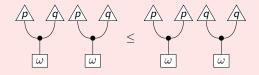
Definition

Let **B** be a Markov σ -effectus, $\omega: 1 \to X$, $p: X \to 1+1$. The **Bayesian update** $\omega|_p$ of the prior ω with evidence p is defined as the normalisation of the following.

Update increases validity

Proposition (by me)

1 Any real Markov σ -effectus **B** validates the **synthetic Cauchy–Schwarz inequality**. That is, for all $\omega: 1 \rightsquigarrow X$, and $p, q: X \rightsquigarrow 1$ the following holds in $Par(\mathbf{B})$.



② For all $\sigma: 1 \to X$, and $p: X \to 1+1$ in **B**, the following inequality holds:

$$p \circ \omega \leq p \circ \omega|_{p}$$
.

Take-home message

- Markov effectuses are a very rich setting for categorical probability.
- ullet My preferred setting: predicate-separated real Markov σ -effectuses
- Such categories all embed into categories of vector spaces/algebras via predicate transformation
- There are many equivalent characterisations of these predicate transformers

References

- A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics. T. Fritz
- Order in partial Markov categories. E. Di Lavore, P. Sobociński, M. Román, M. Széles
- **An introduction to effectus theory.** K. Cho, B. Jacobs, B. Westerbaan, A. Westerbaan
- **Effectuses in categorical quantum foundations.** K. Cho
- A characterisation of ordered abstract probabilities. A. Westerbaan, B. Westerbaan, J. van de Wetering
- Dichotomy between deterministic and probabilistic models in countably additive effectus theory. K. Cho, B. Westerbaan, J. van de Wetering
- \blacksquare The Category of ω-effect algebras: tensor product and ω-completion. D. Lachman