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Discrete probability distributions

Definition
A discrete probability distribution on a set X is a function
φ : X → [0, 1] such that

1 supp(φ) = {x ∈ X : φ(x) ̸= 0} is a finite set.
2

∑
x∈X φ(x) = 1.
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∑
x∈X φ(x) = 1.

We often write such distributions as formal sums:

flip : D({H, T})

flip = 1
2

∣∣∣H〉
+ 1

2

∣∣∣T 〉
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1 supp(φ) = {x ∈ X : φ(x) ̸= 0} is a finite set.
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∑
x∈X φ(x) = 1.

We often write such distributions as formal sums:

flip : D({H, T})

flip = 1
2

∣∣∣H〉
+ 1

2

∣∣∣T 〉
There is a monad D : Sets → Sets.
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Disintegration
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Disintegration

ω : D(A × N)

ω = 1
3

∣∣∣a, 1
〉

+ 1
3

∣∣∣b, 1
〉

+ 1
3

∣∣∣b, 3
〉
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Disintegration

ω : D(A × N)

ω = 1
3

∣∣∣a, 1
〉

+ 1
3

∣∣∣b, 1
〉

+ 1
3

∣∣∣b, 3
〉

Compute the conditional probability ω|A : A → D(N)
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〉
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3

∣∣∣b, 3
〉

Compute the conditional probability ω|A : A → D(N)

1
3

∣∣∣a, 1
〉

+ 1
3

∣∣∣b, 1
〉

+ 1
3

∣∣∣b, 3
〉

7→ (observe that the letter is b)

1
3

∣∣∣a, 1
〉
+1

3

∣∣∣b, 1
〉

+ 1
3

∣∣∣b, 3
〉

7→ renormalise

1
2

∣∣∣b, 1
〉

+ 1
2

∣∣∣b, 3
〉

=ω|A(b)
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Disintegration is partial

ω : D(A × N)

ω = 1
3

∣∣∣a, 1
〉

+ 1
3

∣∣∣b, 1
〉

+ 1
3

∣∣∣b, 3
〉
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Márk Széles Categories of partial probabilistic computations February 7, 2025 4 / 20



Disintegration is partial

ω : D(A × N)

ω = 1
3

∣∣∣a, 1
〉

+ 1
3

∣∣∣b, 1
〉
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3

∣∣∣b, 3
〉

Compute the conditional probability ω|A : A → D(N)
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3

∣∣∣a, 1
〉

+ 1
3

∣∣∣b, 1
〉

+ 1
3

∣∣∣b, 3
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7→ (observe that the letter is c)

1
3

∣∣∣a, 1
〉

+ 1
3

∣∣∣b, 1
〉

+ 1
3

∣∣∣b, 3
〉

7→ renormalise

???
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Discrete probability subdistributions

Definition
A discrete probability subdistribution on a set X is a function
φ : X → [0, 1] such that

1 supp(φ) = {x ∈ X : φ(x) ̸= 0} is a finite set.
2

∑
x∈X φ(x) ≤ 1.

There is a monad D≤ : Sets → Sets. Its Kleisli-category is symmetric
monoidal.
Write f : X → Y for a Kleisli-map f : X → D≤(Y ).
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The structure of Kl(D≤)
Copier maps:

∆X : X → X × X
∆X (x) = 1|x , x⟩

Discard maps:

dX : X → 1
dX (x) = 1|0⟩

Comparator maps:

∇X : X × X → X

∇X (x , y) =
{

1|x⟩ if x = y
0 otherwise
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Copy-discard-compare (CDC) categories

Definition
A copy-discard-compare category is a symmetric monoidal category
(C , ⊗, I) with copier ∆X : X → X ⊗ X , discard dX : X → I, and
comparator ∇X : X ⊗ X → X maps such that...
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The anatomy of a string diagram

Let (C, ⊗, I, α, λ, ρ, σ) be symmetric monoidal.

f

g

ω

p
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The axioms of copy-discard-compare (CDC) categories
Copy and discard:

=

X ⊗ Y X ⊗ YX Y X Y

= = = =

I I

=

I

Compare:

=

X ⊗ Y X ⊗ YX Y X Y

= =

I I

=

I

Copy-compare interaction:

= = =
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Márk Széles Categories of partial probabilistic computations February 7, 2025 9 / 20



The axioms of copy-discard-compare (CDC) categories
Copy and discard:

=

X ⊗ Y X ⊗ YX Y X Y

= = = =

I I

=

I

Compare:

=

X ⊗ Y X ⊗ YX Y X Y

= =

I I

=

I

Copy-compare interaction:

= = =
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Examples of CDC-categories

Sets and subprobability channels: Kl(D≤)
Finite dimensional vector spaces and linear maps: FinVect
Sets and relations: Rel
Standard Borel spaces and subprobability kernels: BorelStoch≤

...
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Our disintegration problem revisited

From ω : 1 → A × N
extract ω|A : A → N:

ω

ω|A :=
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Normalisation

7→

1
3

∣∣∣a, 1
〉
+1

3

∣∣∣b, 1
〉

+ 1
3

∣∣∣b, 3
〉

1
2

∣∣∣b, 1
〉

+ 1
2

∣∣∣b, 3
〉

7→

ω
ω

b
b
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3

∣∣∣b, 3
〉

1
2

∣∣∣b, 1
〉

+ 1
2

∣∣∣b, 3
〉

7→

ω
ω

b
b

1
3

∣∣∣a, 1
〉

+ 1
3

∣∣∣b, 1
〉

+ 1
3

∣∣∣b, 3
〉

07→

7→

ω ω

c c
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Normalisation

One can axiomatise the normalisation boxes purely in terms of
CD-categories

These axioms uniquely characterise normalisation boxes when they
exist.
The normalisation boxes select a least normalisation with respect to a
partial order on normalisations.
The dashed boxes enjoy many compositional properties.
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Self-normalising maps

Definition
We call a map f : X → Y self-normalising if

f f
= f

For a subchannel f : X → Y in Kl(D≤) this translates to

∀x ∈ X .
∑
y∈Y

f (x)(y) ∈ {0, 1}
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The ‘normalised by’ relation
Definition
A map g : X → Y normalises f : X → Y if

g f
= f

In this case, we write f ⪯ g .

For subchannels f , g : X → Y in Kl(D≤) this translates to

f (x) ̸= 0 =⇒ ∀y ∈ Y .g(x)(y) = f (x)(y)∑
y ′ f (x)(y ′)

The relation ⪯ is a partial order on self-normalising maps.
The dashed box should select the least normalisation.
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Disintegration

‘How to factorise P(X , Y ) = P(X ) · P(Y |X )?’.

Definition
If ω : I → X ⊗ Y , then a disintegration of ω is a map ω|X : X → Y that
satisfies

ω =
ω

ω|X

This can be generalised to maps with arbitrary domain.
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Definition
If ω : I → X ⊗ Y , then a disintegration of ω is a map ω|X : X → Y that
satisfies

ω =
ω

ω|X

This can be generalised to maps with arbitrary domain.

Can we use comparators and normalisation to compute a disintegration?

ω
ω|X :=

ω
=
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Deriving disintegration

Can we use comparators and normalisation to compute a disintegration?

ω
ω|X :=

ω
=
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Deriving disintegration

Can we use comparators and normalisation to compute a disintegration?

ω
ω|X :=

ω
=

Yes, when the following implication holds:

ω
=

ω

ω|X

⇒
ω

=
ω

ω|X
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Deriving disintegration
Can we use comparators and normalisation to compute a disintegration?

ω
ω|X :=

ω
=

Yes, when the following implication holds:

ω
=

ω

ω|X

⇒
ω

=
ω

ω|X

Remark
This does not recover disintegration in BorelStoch≤
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Outlook: notions of support

Definition
A map f : X → Y has everywhere full support if

f
=

For f : X → Y this means f (x)(y) > 0 for all x ∈ X , y ∈ Y .

If f has everywhere full support, updating f never fails.
Everywhere full support maps are closed under many operations:
composition, tensor, marginalisation, normalisation, disintegration.
We use this notion for a compositional graphical calculus of
disintegrations in a future article with Bart Jacobs, and Dario Stein.
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Outlook: connections to effectus theory

Effectus theory is a category theoretic framework for quantum and
probability theory, focusing on the structure of well-behaved
coproducts.

Effectuses need not have a monoidal structure. Adding that creates a
very rich setting.
Effectuses come in a total and partial flavour:

TotEf ∼= ParEf
Kl(−+1)

T ot
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