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Mathematics: synthetic vs. analytic

Márk Széles String diagrams for probability December 20, 2024 2 / 19



Why categorical probability?

An axiomatic approach leads to model-agnostic results

Avoid measure theory as much possible
Categorical probability comes with the convenient graphical calculus
of string diagrams
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Why categorical probability?

An axiomatic approach leads to model-agnostic results
Avoid measure theory as much possible
Categorical probability comes with the convenient graphical calculus
of string diagrams

I will demonstrate these aspects by an axiomatic study of equality
comparison, disintegration, and normalisation of measures.
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String diagrams for partial probabilistic computation: a
motivating example

I roll a red and a blue die, and see that their sum is 10. What is the
probability that the red die shows 5?
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String diagrams for partial probabilistic computation: a
motivating example

I roll a red and a blue die, and see that their sum is 10. What is the
probability that the red die shows 5?

red ∼ roll()
blue ∼ roll()
sum← blue + red
observe sum = 10
return red
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String diagrams for partial probabilistic computation: a
motivating example

I roll a red and a blue die, and see that their sum is 10. What is the
probability that the red die shows 5?

red ∼ roll()
blue ∼ roll()
sum← blue + red
observe sum = 10
return red roll

roll

+10
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Why string diagrams?

Topological transformations that ‘make sense’ are sound.

roll
roll

+10

roll
roll

+10= =

rollroll

+ 10

This saves bookkeeping compared to a term language.

Sometimes one needs terms with multiple outputs
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The semantic universe: subprobabilistic computations

roll(0) : [1]→ [6]

roll(0) = 1
6

∣∣∣1〉
+ 1

6

∣∣∣2〉
+ 1

6

∣∣∣3〉
+ 1

6

∣∣∣4〉
+ 1

6

∣∣∣5〉
+ 1

6

∣∣∣6〉
roll

[6]
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roll

[6]

copy : [6]→ [6]× [6]
copy(i) = 1|i , i⟩ [6]

[6][6]
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+ 1

6
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roll

[6]

copy : [6]→ [6]× [6]
copy(i) = 1|i , i⟩ [6]

[6][6]

compare : [6]× [6]→ [6]

compare(i , j) =
{

1|i⟩ if i = j
0 otherwise

[6]

[6][6]
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copy : [6]→ [6]× [6]
copy(i) = 1|i , i⟩ [6]

[6][6]

compare : [6]× [6]→ [6]

compare(i , j) =
{

1|i⟩ if i = j
0 otherwise

[6]

[6][6]

discard : [6]→ [1]
discard(i) = 1|0⟩

[6]
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Composing subprobability channels

If f : X → Y , g : Y → Z , then

g ◦ f : X → Z
(g ◦ f )(z |x) =

∑
y∈Y

f (y |x) · g(z |y) f

g

X

Y

Z

If f : X → Y , g : A→ B, then

(f ⊗ g) : X × A→ Y × B
(f ⊗ g)(y , b|x , a) = f (y |x) · g(b|a)

f g
Y

X A

B
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The axioms of copy and compare (CDC-categories)
Copy and discard:

=

X ⊗ Y X ⊗ YX Y X Y

= = = =

Compare:

=

X ⊗ Y X ⊗ YX Y X Y

= =

Copy-compare interaction:

= = =
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Examples of CDC-categories

Finite sets and subprobability channels: FinSubStoch
Finite dimensional vector spaces and linear maps: FinVect
Sets and relations: Rel
Standard Borel spaces and subprobability kernels: BorelStoch≤

...
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Normalisation

roll
roll

+10
7→

roll
roll

+10

1
36

∣∣∣4〉
+ 1

36

∣∣∣5〉
+ 1

36

∣∣∣6〉
1
3

∣∣∣4〉
+ 1

3

∣∣∣5〉
+ 1

3

∣∣∣6〉
7→
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Normalisation

roll
roll

+10
7→

roll
roll

+10

1
36

∣∣∣4〉
+ 1

36

∣∣∣5〉
+ 1

36

∣∣∣6〉
1
3

∣∣∣4〉
+ 1

3

∣∣∣5〉
+ 1

3

∣∣∣6〉
7→

But how do we normalise the zero subdistribution?
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Normalised maps

Definition
We call a map f : X → Y normalised if

f f
= f

This translates to
∀x ∈ X .∥f (x)∥ ∈ {0, 1}
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The ‘normalised by’ relation
Definition
A map g : X → Y normalises f : X → Y if

g f
= f

In this case, we write f ⪯ g .

This translates to the following condition for all x ∈ X .

f (x) ̸= 0 =⇒ ∀y ∈ Y .g(y |x) = f (y |x)
∥f (x)∥

The relation ⪯ is a partial order on normalised maps
The dashed box should select the least normalisation
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The axioms of the dashed box

Definition
A normalisation structure assigns to every f : X → Y a normalised
nrm(f ) : X → Y such that

1 f ⪯ nrm(f )

2 If f ⪯ f , then nrm(f ) = f
3 The following hold

f g f g=

f = f f = f
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The axioms of the dashed box

Proposition
The dashed box assigns a least normalisation to each morphism.
Therefore, a CD-category can admit at most one normalisation structure.
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Disintegration

‘How to compute P(Y |X , Z ) from P(X , Y |Z )?’.

Definition
If f : Z → X × Y , then a disintegration of f is a map fX : X × Z → Y
that satisifes

f =
f

f |X

Can we use comparator and normalisation to compute a disintegration?

f
f |X :=

f
=
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Deriving disintegration

Can we use comparator and normalisation to compute a disintegration?

f
f |X :=

f
=
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Deriving disintegration

Can we use comparator and normalisation to compute a disintegration?

f
f |X :=

f
=

The answer is ‘sometimes’:

f = f =f |X

f

t

=
f

f |X

=

f |X f
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Deriving disintegration
Can we use comparator and normalisation to compute a disintegration?

f
f |X :=

f
=

The answer is ‘sometimes’:

f = f =f |X

f

t

=
f

f |X

=

f |X f

Remark
This does not recover disintegration in BorelStoch≤
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Comparators from disintegration

Proposition
A map f : X × X → X is a disintegration of the copier iff

f
=
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Comparators from disintegration

Proposition
A map f : X × X → X is a disintegration of the copier iff

f
=

Proof:

copy
X X =

f
X

= = = copy
X X

f f

X

X
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Comparators from disintegration

Proposition
A map f : X × X → X is a disintegration of the copier iff

f
=

Proposition (by me)
A CD-category has comparators if and only if the copiers have minimal
disintegrations.
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Question to the room

Question
How to integrate string diagrammatic reasoning with proof assistants?

There is a good attempt: ‘chyp’ by Aleks Kissinger.
(https://github.com/akissinger/chyp)
The rewrite theory exists (see references)
It is not easy to integrate with existing proof assistant infrastructure
(e.g. Coq)
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